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and the current approach to reducing adverse consequences 
relies on early recognition and treatment [4]. The impor-
tance of prompt and accurate arrhythmia diagnosis using 
various electrical recording devices is clear.

The 12-lead electrocardiogram (ECG) is the most com-
monly used diagnostic tool to detect cardiac arrhythmias in 
clinical practice. It efficiently and rapidly records a 10-sec-
ond heart rate and rhythm duration, providing information 
on cardiac electrical properties [5]. Precise interpreta-
tion of the 12-lead ECG is crucial for diagnosing cardiac 

Introduction

Cardiac arrhythmias include all conditions in which the 
heart’s conduction system is disrupted. Structural or elec-
trical abnormalities in the cardiomyocytes can lead to 
abnormal impulse formation or alter cardiac propagation, 
facilitating arrhythmias [1]. Arrhythmias are prevalent 
across all age groups and may occur in both healthy and 
structurally abnormal hearts [2, 3]. Cardiac arrhythmias 
are a major cause of morbidity and mortality worldwide, 
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arrhythmias. However, many residents and young attend-
ing physicians struggle to improve their ability to interpret 
ECGs accurately and often require assistance from expert 
cardiologists for a correct diagnosis. Computerized ECG 
interpretation by the device has been developed since the 
1960s and has become routine today [6]. While computer-
ized interpretations provide diagnostic assistance based on 
traditional rule-based criteria, they still exhibit significant 
errors when applied to complex arrhythmias [7]. Since 
expert cardiologists may not always be available, there is 
a need for a more comprehensive diagnostic algorithm to 
improve the accuracy of ECG analysis and better support 
clinicians in managing life-threatening arrhythmias.

Artificial intelligence (AI) and machine learning (ML) in 
medicine are currently areas of intense exploration, trans-
forming clinical practice, particularly in ECG interpreta-
tion and prediction. Recently, widely available digital ECG 
data and the algorithmic paradigm of deep learning models 
(DLMs) have been applied to improve the accuracy and 
scalability of automated ECG analysis [8]. Previous studies 
have demonstrated that computer-assisted classification and 
diagnosis of cardiac arrhythmias have provided comparable 
diagnostic accuracy to that of a cardiologist [9–12]. How-
ever, previous DLMs investigated only parts of common 
arrhythmias, potentially missing certain uncommon but clin-
ically significant arrhythmias. In our study, we established 
and validated a comprehensive DLM capable of detecting 
23 clinically important cardiac arrhythmias. To ensure the 
generalizability of our DLM, we performed external valida-
tion using three worldwide open-access databases.

Materials and Methods

Study Design and Data Collection

The study was an algorithm development study primarily 
using the Tri-Service General Hospital, Taiwan database 
to establish a DLM and assess its performance for cardiac 
arrhythmia detection. This study was approved by the Insti-
tutional Review Board of the Tri-Service General Hospital, 
National Defense Medical Center (IRB NO. C202105049), 
in accordance with the ethical guidelines of the Declara-
tion of Helsinki of the World Medical Association. Patient 
consent was waived because data were collected retrospec-
tively and stored in anonymized, encrypted files that were 
transferred from the hospital to the data controller. Research 
groups had no access to any patient identities. To maximize 
the inclusion of rare yet clinically significant arrhythmias in 
our dataset, 7,663 patients who had undergone electrophysi-
ological study and catheter ablation or possessed a corre-
sponding International Classification of Diseases Tenth 

Revision (ICD-10) code were included. Accordingly, 22,130 
ECGs were used to develop the DLM and were divided into 
four private datasets (development set, tuning set, valida-
tion set, and competition set), as shown in Fig. 1. Most of 
the patient data used for model development involved Asian 
participants, 57.1% of whom were male, with a mean age 
of approximately 70 years. All ECG recordings were col-
lected using a Philips 12-lead ECG machine (PH080A) with 
a sampling frequency of 500 Hz and 10 s recorded in each 
lead. Patient characteristics of sex and age were acquired 
from the electronic medical record.

Classification of Cardiac Arrhythmias

This study included 23 arrhythmia classes, encompassing 
sinus rhythm (SR), sinus arrhythmia (SA), sinus bradycardia 
(SB), sinus tachycardia (ST), ectopic atrial rhythm (EAT), 
first-degree atrioventricular block (1AVB), 2:1 atrioventric-
ular block (2:1AVB), second-degree atrioventricular block, 
Mobitz type I (2AVB1), second-degree atrioventricular 
block, Mobitz type II (2AVB2), complete AV block (CAVB), 
junctional rhythm/junctional bradycardia (JR), atrial fibril-
lation (AF), typical/atypical atrial flutter (AFL), paroxysmal 
supraventricular tachycardia (PSVT), Wolff-Parkinson-
White syndrome with pre-excitation (WPW), nonspecific 
intraventricular conduction disturbance (NSIVCD), left fas-
cicular block (LFB) including left anterior fascicular block 
(LAFB) and left posterior fascicular block (LPFB), complete 
right bundle branch block (CRBBB), complete left bundle 
branch block (CLBBB), pacemaker rhythm (PMR), prema-
ture atrial complex (PAC), premature ventricular complex 
(PVC), idioventricular rhythm or accelerated idioventricu-
lar rhythm (IVR), ventricular tachycardia/ventricular fibril-
lation (VT/VF), and noise signals. The diagnostic terms and 
definitions for each arrhythmia class were established based 
on previous recommendations for the standardization and 
interpretation of ECGs [13, 14].

Protocol of ECG Annotation and Development of 
Deep Learning Model

In this study, five cardiologists served as annotators. Each 
ECG was annotated by three independent annotators who 
were unaware of any patient information. A committee 
convened to reach a final determination in cases of dispa-
rate results among the three annotations. Stringent criteria 
for consistent annotation were applied to ensure complete 
uniformity in the 23 arrhythmia classifications within mul-
tiple-choice questions. The committee included all five 
annotators and three additional experienced cardiologists, 
and the final annotations were derived following a compre-
hensive review of medical records and consensus among the 
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cardiologists. The committee examined approximately 20% 
of ECGs with inconsistent annotations, and 193 ECGs from 
174 patients were selected as an independent competition 
set for human-machine competition. To rigorously evalu-
ate model performance across various clinical scenarios, 
the ECG selection process for human-machine competi-
tion prioritized arrhythmia diversity, patient representation, 
ECG quality, and a balance of easy and challenging cases. 
ECGs from the remaining patients were randomly assigned 
to a development set, a tuning set, and a validation set. The 
DLM underwent training and internal testing using the 
development set, and the tuning set was used to guide the 
training process. For each arrhythmia class, the validation 
set was employed for accuracy testing, and there were no 
overlaps between the private datasets.

To validate the DLM performance in external popula-
tions, we utilized three additional open datasets. The CODE 
test is a subset of the openly available Clinical Outcomes in 
Digital Electrocardiography (CODE) dataset (​h​t​t​p​​s​:​/​​/​z​e​n​​o​d​​
o​.​o​​r​g​/​r​​e​c​o​​r​d​/​​3​7​6​5​7​8​0) [15]. The PTB-XL is a large publicly 
available electrocardiography multi-label dataset annotated 
by up to two cardiologists (​h​t​t​p​​s​:​/​​/​p​h​y​​s​i​​o​n​e​​t​.​o​r​​g​/​c​​o​n​t​​e​n​t​/​p​

t​b​-​x​l​/​1​.​0​.​1​/) [16]. The China Physiological Signal ​C​h​a​l​l​e​n​
g​e in 2018 (CPSC2018) (http://2018.icbeb.org/), which is 
openly available and was held during the 7th International 
Conference on Biomedical Engineering and Biotechnol-
ogy in Nanjing, China [17]. We included only ECGs with 
signals lasting more than 10 s, resizing them to a sampling 
frequency of 500 Hz, consistent with our approach to pro-
cessing our private datasets.

Implementation of Deep Learning Model

To further enhance prediction performance, we incorporated 
ECG12Net, a 12-channel sequence-to-sequence model 
modified from DenseNet [18]. ECG12Net consists of 12 
ECG lead blocks, each with 80 trainable layers that extract 
864 features per lead to generate independent predictions. 
A hierarchical attention mechanism integrates information 
from all leads, improving interpretability and optimizing 
overall prediction accuracy [19].

We trained 25 independent DLMs for sinus rhythm, 
noise, and each arrhythmia class, and the architecture of the 
DLM was developed in our previous study. [20, 21]. Each 

Fig. 1  Development, tuning, internal validation, and external valida-
tion sets generation and ECG labeling of survival information in pri-
vate dataset. Schematic of the dataset creation and analysis strategy, 
devised to ensure a robust and reliable dataset for model development, 
tuning, and validation of the network. Once a patient’s data was placed 

in one of the private datasets, that individual’s data was used only in 
that set, avoiding ‘cross-contamination’ among the model develop-
ment, validation, and test datasets. The details of the flowchart and 
how each of the datasets was used are described in the Methods
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positive predictive value (PPV), and negative predictive 
value (NPV) were calculated based on the maximum of 
Youden’s index in the tuning set, and all operating points 
were consistent in each dataset. In the human-machine 
competition, we included two visiting staff (one emergency 
physician and one cardiologist), three internal-medicine 
residents, and three post-graduate year (PGY) trainees. The 
physicians had no access to patient information for further 
diagnosis, and their sensitivity and specificity were calcu-
lated to compare with those of the DLM. The box plot and 
jittered points were used to present the distribution of prob-
abilities given by DLMs in each annotated certainty group. 
For the “previvor” analysis, we performed Kaplan–Meier 
survival analysis with the available follow-up data stratified 
by the DLM prediction on each outcome of interest. Fur-
ther, we fitted a Cox proportional-hazard model adjusted by 
sex and age. The hazard ratios (HRs) with 95% confidence 
intervals (95% CIs) were reported.

Results

The baseline characteristics of each dataset are presented 
in Table 1. The development and tuning sets comprised a 
total of 13,158 ECGs with 57.1% males, aged 70.7 ± 17.5 
years, and 4,170 ECGs with 57.5% males, aged 70.5 ± 16.9 
years, respectively. Neither of the two sets was included 
in the performance assessment. The validation set, which 
had complete labels for 23 arrhythmia classes, consisted of 
4,609 ECGs with 60.4% males, aged 70.4 ± 17.3 years. In 
the competition set, only 19 of the 23 arrhythmia classes 
were represented, comprising 193 ECGs with 66.3% males, 
aged 70.8 ± 17.6 years. Arrhythmias of EAT, 2AVB2, LFB, 
and IVR were excluded because of the limited number of 
samples, and NSIVCD was excluded due to unclear defini-
tions. Additionally, all selected ECGs in the competition set 
exhibited clear ECG signals without noise. The open data-
sets, including CODE-test, PTB-XL, and CPSC2018 data-
set, consisted of 827, 21,837, and 6,867 ECGs, respectively, 
with annotations of 6, 12, and 6 arrhythmia classes.

Figure 2 shows the performance of the DLM on the 
validation set. High-performance measures were obtained 
across 15 arrhythmia classes, including SR, SB, ST, 1AVB, 
2:1AVB, CAVB, AF, AFL, PSVT, WPW, CLBBB, CRBBB, 
PMR, IVR, and VT/VF, with AUCs above 0.97 and sensi-
tivity/specificity indexes exceeding 90%. Notably, the DLM 
performed better than the Philips ECG automatic analysis 
system [26], except for SA and 2AVB1. However, the sen-
sitivity of the DLM remained superior to that of the Philips 
ECG automatic analysis system in these two arrhythmia 
classes. Given that annotators contributed to the standard 
answers in these ECGs, the DLM exhibited comparatively 

DLM produced a probability output describing a binary out-
come, and we followed the same technological details as 
in training a new DLM [19, 22, 23]. The input format of 
the DLM was a sequence of 4,096 numeric values, but the 
original length of our 12-lead ECG signal was 5,000. Dur-
ing the training process, we randomly cropped a sequence 
of 4,096 as input. For the inference stage, two overlapping 
sequences of 4,096 at the start and end were used to gener-
ate predictions, which were averaged as the final prediction 
[24]. An oversampling process was implemented to ensure 
that rare arrhythmia classes were adequately recognized, 
sampling the same number of positive and negative ECGs 
in a single batch. We trained these DLMs with a batch size 
of 32 and used an initial learning rate of 0.001 with the 
Adam optimizer, using standard parameters (β1 = 0.9 and 
β2 = 0.999). The learning rate was decayed by a factor of 
10 each time the loss on the tuning set plateaued after an 
epoch. To prevent the DLM from overfitting, early stopping 
was performed by saving the network after every epoch and 
choosing the saved DLMs with the lowest loss on the tuning 
set. The only regularization method for avoiding overfitting 
was L2 regularization with a coefficient of 10− 4 in this study.

Outcome Variables

We conducted a follow-up on three AF-related outcomes 
of interest, including new-onset AF, heart failure (HF), and 
all-cause mortality, to explore the concept of “previvor” in 
AF within the validation set [25]. Patients without a his-
tory of AF at the time of initial classification were included 
in the analysis. New-onset AF was defined by the ICD-10 
coded by physicians, and the new-onset HF was defined 
based on a quantitative ejection fraction of ≤ 35% routinely 
acquired by experienced cardiologists. For all-cause mortal-
ity, patient status (dead/alive) was extracted from the elec-
tronic medical record. Additionally, data for living patients 
were censored at the patient’s last known hospital encounter 
to mitigate potential bias from incomplete records. The end 
of follow-up for all outcomes was September 30, 2021.

Statistical Analysis

All analyses were based on ECGs. We presented their char-
acteristics as means and standard deviations, numbers of 
patients, or percentages, where appropriate. The statistical 
analysis was carried out using the software environment 
R version 3.4.4. The software package MXNet version 
1.3.0 was implemented in our deep learning model. We 
used a significance level of p < 0.05 throughout the analy-
sis. The receiver operating characteristic (ROC) curve and 
area under the curve (AUC) were applied to evaluate the 
DLM performance. Additionally, the sensitivity, specificity, 
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SR, 1AVB, AFL, PAC, and PVC, the DLM ranked from 
fourth to sixth place compared to physicians but exhib-
ited comparatively lower performance in detecting SA 
and 2AVB1 compared to the average level of participants. 
Regarding balanced accuracy, indicated by the mean of sen-
sitivity and specificity, the DLM performed better than five 
or more participants in most arrhythmia classes, except for 
PVC and 2AVB1. Notably, in this human-machine competi-
tion, the Philips ECG automatic analysis system surpassed 
the DLM only in detecting SA, 2AVB1, and AFL. Accord-
ing to the average balanced accuracy across 19 arrhythmia 
classes, our DLM ranked first (92.3%), followed by a third-
year cardiologist (86.0%), a fifteen-year emergency phy-
sician (84.7%), a second-year PGY-1 (83.7%), first-year 

lower performance than annotators across most arrhythmia 
classes. Nevertheless, the DLM still performed similarly to 
annotators in 2:1AVB, AF, WPW, CRBBB, PMR, and VT/
VF.

The results of the human-machine competition are pre-
sented in Fig. 3. There were 8 participants in the competi-
tion, including three internal medicine residents, three PGY 
trainees, and two visiting staff (one emergency physician 
and one cardiologist). Using the same specificity as each 
participating physician, our DLM demonstrated superior or 
equivalent sensitivity in 2:1AVB, AF, CRBBB, and PMR 
compared to all participants. In the case of SB, ST, CAVB, 
JR, PSVT, WPW, CLBBB, and VT/VF, only three or fewer 
participants performed better than the DLM. For detecting 

Table 1  Baseline characteristics in each dataset
Private datasets Open datasets
Development
(n = 13158)

Tuning
(n = 4170)

Validation
(n = 4609)

Competition
(n = 193)

CODE-test
(n = 827)

PTB-XL
(n = 21837)

CPSC2018
(n = 6867)

Demography
Male 6896(57.1%) 2398(57.5%) 2782(60.4%) 128(66.3%) 321(38.8%) 10,458(47.9%) 3692(53.8%)
Age 70.7 ± 17.5 70.5 ± 16.9 70.4 ± 17.3 70.8 ± 17.6 54.9 ± 16.5 59.8 ± 17.0 60.2 ± 19.1
Arrhythmia
SR 3656(27.8%) 1186(28.4%) 1277(27.7%) 36(18.7%)
SA 117(0.9%) 31(0.7%) 39(0.8%) 10(5.2%)
SB 803(6.1%) 260(6.2%) 379(8.2%) 11(5.7%) 16(1.9%)
ST 2138(16.2%) 681(16.3%) 716(15.5%) 20(10.4%) 37(4.5%)
EAT 64(0.5%) 19(0.5%) 25(0.5%)
1AVB 2015(15.3%) 723(17.3%) 831(18.0%) 40(20.7%) 28(3.4%) 797(3.6%) 721(10.5%)
2:1AVB 92(0.7%) 27(0.6%) 44(1.0%) 4(2.1%)
2AVB1 22(0.2%) 4(0.1%) 12(0.3%) 6(3.1%)
2AVB2 39(0.3%) 24(0.6%) 34(0.7%)
CAVB 263(2.0%) 106(2.5%) 103(2.2%) 10(5.2%) 16(0.1%)
JR 401(3.0%) 131(3.1%) 127(2.8%) 11(5.7%)
AF 2472(18.8%) 830(19.9%) 869(18.9%) 16(8.3%) 13(1.6%) 1514(6.9%) 1220(17.8%)
AFL 347(2.6%) 85(2.0%) 114(2.5%) 12(6.2%) 73(0.3%)
PSVT 303(2.3%) 82(2.0%) 95(2.1%) 10(5.2%) 24(0.1%)
WPW 154(1.2%) 43(1.0%) 48(1.0%) 10(5.2%) 80(0.4%)
NSIVCD 560(4.3%) 207(5.0%) 162(3.5%) 789(3.6%)
LFB 102(0.8%) 46(1.1%) 56(1.2%)
CLBBB 277(2.1%) 93(2.2%) 58(1.3%) 11(5.7%) 30(3.6%) 536(2.5%) 235(3.4%)
CRBBB 1667(12.7%) 476(11.4%) 552(12.0%) 40(20.7%) 34(4.1%) 542(2.5%) 1854(27.0%)
PMR 2526(19.2%) 754(18.1%) 811(17.6%) 14(7.3%) 296(1.4%)
PAC 410(3.1%) 167(4.0%) 176(3.8%) 23(11.9%) 398(1.8%) 614(8.9%)
PVC 881(6.7%) 284(6.8%) 280(6.1%) 17(8.8%) 1146(5.2%) 699(10.2%)
IVR 26(0.2%) 6(0.1%) 8(0.2%)
VT/VF 143(1.1%) 43(1.0%) 54(1.2%) 7(3.6%)
Noise 55(0.4%) 19(0.5%) 11(0.2%)
Abbreviations SR, sinus rhythm; SA, sinus arrhythmia; SB, sinus bradycardia; ST, sinus tachycardia; EAT, ectopic atrial rhythm; 1AVB, 
first-degree atrioventricular block; 2:1AVB, 2:1 atrioventricular block; 2AVB1, second-degree atrioventricular block (mobitz type I); 2AVB2, 
second-degree atrioventricular block (mobitz type II); CAVB, complete AV block; JR, junctional escape rhythm/junctional bradycardia; AF, 
atrial fibrillation; AFL, atrial flutter (typical/atypical); PSVT, paroxysmal supraventricular tachycardia; WPW, Wolff-Parkinson-White syn-
drome with pre-excitation; NSIVCD, nonspecific intraventricular conduction delay; LFB, left fascicular block; CLBBB, complete right bundle 
branch block; CRBBB, complete left bundle branch block; PMR, pacemaker rhythm; PAC, premature atrial complexes (bigeminy/trigeminy/
quadrigeminy); PVC, premature ventricular complexes (bigeminy/trigeminy/quadrigeminy); IVR, idiopathic ventricular rhythm or accelerated 
idiopathic ventricular rhythm; VT/VF, ventricular tachycardia or ventricular fibrillation
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Fig. 2  Receiver operating characteristic (ROC) curve analysis for com-
plete 23 cardiac arrhythmias from deep learning model using 12-lead 
electrocardiogram (ECG) in the validation set. The operating point 
was selected based on the maximum of Youden’s index in the tun-
ing set and is presented using a circle mark. The area under the ROC 
curve (AUC), sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV) were calculated based on it. The 
green triangle represents the diagnosis based on the Philips ECG auto-
matic analysis system, and the blue squares represent the performance 
of annotators. It should be noted that annotations from each annotator 
are part of the standard answer in this study
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Fig. 3  Performance comparison in recognition of 19 selected cardiac 
arrhythmias in the human-machine competition. All participants in 
this competition could access the 12-lead electrocardiogram (ECG) to 
decide their answers. The operating point was selected based on the 
maximum of Youden’s index in the tuning set and is presented using a 
circle mark. The area under the ROC curve (AUC), sensitivity, speci-
ficity, positive predictive value (PPV), and negative predictive value 

(NPV) were calculated based on it. The green triangle represents the 
diagnosis based on the Philips ECG automatic analysis system, and the 
other marks represent the performance of participants with different 
qualifications. The lower panel shows the average performance com-
parison in balanced accuracy, sensitivity, and specificity, ordered by 
balanced accuracy
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1AVB = 0.9710; CLBBB = 0.9768; CRBBB = 0.9919). For 
the PTB-XL dataset, the AUCs of NSIVCD, 1AVB, CAVB, 
CLBBB, CRBBB, and WPW were 0.8032, 0.9275, 0.9582, 
0.9883, 0.9959, and 0.9651, respectively, which were con-
sistent with another previous study, with AUCs of 0.744, 
0.968, 0.967, 0.999, 0.998, and 0.855 [27]. The accuracy of 
these 12 arrhythmia classes in PTB-XL was similar to that in 
the validation set, with an AUC for AF of 0.9892, a sensitiv-
ity of 95.4%, and a specificity of 98.7%. In the CPSC2018 
dataset, our DLM also achieved satisfactory AUCs of 
0.9824, 0.9813, 0.9615, 0.9325, 0.8705, and 0.8865 for 
detecting AF, 1AVB, CLBBB, CRBBB, PAC, and PVC, 
respectively, which were also consistent with those in the 
validation set. Our DLM performed better in CLBBB com-
pared to a previous study, with AUCs of 0.9598, [28] but 
the previous study reported higher AUCs of 0.9973, 0.9999, 
0.9860, and 0.9647 in 1AVB, CRBBB, PAC, and PVC. The 
comparisons of DLMs for different types of arrhythmias 
across various datasets are summarized in Table 2.

To investigate the predictive ability of AI disease pre-
vivor in our DLM model, patients without histories of AF 
were included in the analysis. Of these, individuals who 
were annotated as having no AF, but labeled as having AF 
by the DLM were categorized into the false-positive group. 
Conversely, those identified as having no AF both by anno-
tation and the DLM were categorized into the true-negative 
group. The long-term incidences of AF-related clinical out-
comes (new-onset AF, new-onset HF, and mortality) in the 
two groups are depicted in Fig. 7. There were 2,650, 2,555, 
and 3,692 at-risk cases that developed a new-onset AF, new-
onset HF, and mortality over a median (interquartile range, 
IQR) follow-up of 1.17 (0.34–2.53) years, 1.23 (0.52–2.89) 
years, and 1.43 (0.31–2.87) years, respectively. In the false-
positive group, the cumulative incidence rates for new-onset 
AF, new-onset HF, and future mortality were 28.9%, 31.3%, 
and 22.2% at 2 years follow-up; 39.4%, 39.9%, and 22.2% 
at 4 years follow-up; and 39.4%, 39.9%, and 29.0% at 6 
years follow-up. Compared with the true-negative group, 
patients categorized as false-positive had a significantly 
higher risk of developing new-onset AF (HR: 1.69, 95% CI: 
1.11–2.59), new-onset HF (HR: 1.73, 95% CI: 1.20–2.51), 
and mortality (HR: 1.40, 95% CI: 1.02–1.92) after adjusting 
for sex and age.

Discussion

Using 12-lead ECGs, we established a DLM algorithm capa-
ble of accurately detecting 23 common cardiac arrhythmias. 
Our study implemented a highly integrated and rigorous 
ECG annotation protocol and, to the best of our knowledge, 
included the largest number of arrhythmias compared to 

resident-1 (82.7%), Philips ECG automatic analysis system 
(80.0%), second-year PGY-2 (73.0%), first-year resident-2 
(70.2%), first-year resident-3 (69.9%), and second-year 
PGY-3 (69.0%). While the DLM had the best average sensi-
tivity (94.4%) compared to other participants and the Phil-
ips ECG automatic analysis system, its average specificity 
was the lowest (90.2%).

Due to the subjective nature of arrhythmia interpretation 
and the potential for uncertainty when reading ECGs, we 
compared the probability distribution provided by the DLM 
across each annotated certainty group (Fig.  4). Group 1 
comprised ECGs with a consistent arrhythmic diagnosis by 
all annotators; Group 2 included ECGs with initially incon-
sistent annotations, but whose diagnosis was subsequently 
confirmed by a consensus committee; Group 3 consisted of 
ECGs with initially inconsistent annotations, subsequently 
revised to another diagnosis by a consensus committee; and 
Group 4 included ECGs with consistent negative identifi-
cation (subsequently revised to another diagnosis) from all 
annotators. Consequently, the certainty levels during ECG 
annotation were categorized as definitely positive in Group 
1, probably positive in Group 2, probably negative in Group 
3, and definitely negative in Group 4. The probability dis-
tribution given by the DLM consistently aligned with the 
annotated certainty level, from definitely positive (Group 1), 
probably positive (Group 2), probably negative (Group 3), 
to definitely negative (Group 4) in all 23 arrhythmia classes. 
This finding suggests a correlation between the probability 
distribution by the DLM and the degree of clinical uncer-
tainty during ECG interpretation.

Figure 5 shows the lead comparison analysis for each 
arrhythmia class. Generally, the DLM exhibited more accu-
rate performance by utilizing information from all 12 leads 
compared to using any single lead alone. Notably, lead I had 
a performance similar to the overall 12 leads and better per-
formance than other single leads. The superior performance 
of lead I was evident in arrhythmia classes of SR, SB, ST, 
1AVB, 2:1AVB, CAVB, JR, AF, WPW, NSIVCD, CLBBB, 
PMR, PAC, and PVC. The mean rank order was as follows: 
12 leads (1.72), lead I (4.14), lead II (6.62), lead V4 (6.76), 
and so on.

The external validation of our DLMs in open datasets is 
shown in Fig. 6. In a previous study, Ribeiro et al. reported sen-
sitivity/specificity values of 96.9%/100.0%, 93.8%/99.6%, 
97.3%/99.7%, 92.9%/99.5%, 100.0%/100.0%, and 
100.0%/99.5% for AF, SB, ST, 1AVB, CLBBB, and 
CRBBB in the CODE-test, respectively [10]. Our DLMs 
show comparable sensitivity/specificity of 100.0%/98.8% 
in AF with an AUC of 0.9996. The AUCs for SB, ST, 1AVB, 
CLBBB, and CRBBB were 0.9279, 0.9948, 0.9570, 0.9909, 
and 0.9839, respectively, compared to the correspond-
ing AUCs in the validation set (SB = 0.9852; ST = 0.9889; 
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encompass a broader range of potentially clinically signifi-
cant arrhythmias [30]. For example, we included 2:1 AVB, a 
condition not previously tested in other studies. The electro-
cardiographic characteristics of 2:1 AVB typically manifest 
as a normal PR interval with a narrow QRS, followed by a 

previously published studies [12, 29]. Jo et al. developed 
an explainable deep learning model to classify nine classes 
of arrhythmia. Meanwhile, Zhu et al. presented a multilabel 
ECG diagnosis deep learning model that can detect 21 dis-
tinct arrhythmias. In contrast, our study extended its scope to 

Fig. 4  The distribution of probability given by deep learning model 
12-lead electrocardiogram (ECG) in each annotated certainty group. 
Group 1 comprised ECGs with a consistent arrhythmic diagnosis by all 
annotators; Group 2 included ECGs with initially inconsistent annota-
tions, but whose diagnosis was subsequently confirmed by a consen-
sus committee; Group 3 consisted of ECGs with initially inconsistent 
annotations, subsequently revised to another diagnosis by a consensus 

committee; and Group 4 included ECGs with consistent negative iden-
tification (subsequently revised to another diagnosis) from all annota-
tors. Their probabilities are presented as corresponding boxplots with 
jittered points. The purple dashed line is the operating point for maxi-
mizing Youden’s index in the tuning set. The horizontal dotted lines 
represent the log-odds (or logit) of the best threshold selected from 
the ROC curve
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that patients with a false-positive prediction of AF exhibit a 
poorer prognosis than those with a true-negative prediction.

As computerized ECG analysis is routinely used world-
wide, it is very convenient for clinical physicians to acquire 
diagnostic information from a 12-lead ECG. However, ECG 
misinterpretation by computerized analysis systems remains 
a concern. Over-reliance on computer ECG analysis can 
potentially result in inappropriate patient management 
[7]. In our study, the DLM exhibited superior diagnostic 

non-conducted P wave, and it requires prompt recognition 
and management [31, 32]. In our study, the DLM performed 
well in 15 arrhythmia classes with AUCs above 0.97. Spe-
cifically, the AUC for 2:1 AVB was 0.99, with a sensitivity 
of 100% and a specificity of 97.5%. In the human-machine 
competition, the DLM demonstrated cardiologist-level 
accuracy and achieved better performance than young resi-
dents and PGY trainees. Importantly, we also highlighted 

Fig. 5  Performance ranking of deep learning model via information 
from 12 leads and each lead individually for detecting 23 cardiac 
arrhythmias in the validation set. The y-axis primarily presents the area 
under the receiver operating characteristic curve (AUC) as the bar and 
the black text with corresponding 95% confidence intervals. Sensitiv-

ity and specificity are also presented as black squares and triangles, 
respectively, based on the operating point for maximizing Youden’s 
index in the tuning set. The results of 12 leads and the most popular 
lead, lead I, are colored as blue and yellow to emphasize their ranking

 

1 3

   51   Page 10 of 16



Journal of Medical Systems           (2025) 49:51 

ECG analysis, thereby saving considerable time in interpret-
ing large volumes of ECGs in daily practice.

Regarding the distribution of probability, we found a 
strong correlation between the probability given by our 
DLM and the degree of clinical uncertainty during ECG 
interpretation by physicians. In clinical practice, the inter-
pretation of 12-lead ECGs is usually assisted by an auto-
mated computerized diagnosis, serving as an anchor for 
physicians. However, uncertainties are very common when 
there are conflicts between the interpretations made by 
physicians and the computerized analysis system. Nota-
bly, incorrect computerized interpretations can potentially 
influence the physician’s thinking process and even reduce 
diagnostic accuracy, illustrating an “automation bias.” [33]. 

accuracy compared to the Philips ECG analysis system 
in almost every class of arrhythmia. In the validation set, 
the DLM achieved a high AUC (> 90%) for detecting 22 
classes of arrhythmias. In the human-machine competition, 
the DLM demonstrated the best average performance in 
balanced accuracy compared to other competitors, includ-
ing a third-year cardiologist. Notably, the DLM had the best 
average performance in sensitivity and balanced accuracy. 
The high-sensitivity operating point suggests that the DLM 
could be an effective screening tool to rule out a wide range 
of clinically significant cardiac arrhythmias, especially in 
high-risk patients. Due to its high negative predictive value, 
our DLM could assist clinical physicians by more accu-
rately excluding normal ECGs than current computerized 

Fig. 6  Summary of model performance in CODE-test, PTB-XL, and 
CPSC2018 datasets. The operating point was selected based on the 
maximum of Youden’s index in the tuning set and is. The area under 
the ROC curve (AUC), sensitivity, specificity, positive predictive value 

(PPV), and negative predictive value (NPV) were calculated based on 
it. This analysis was based on a complete 12-lead electrocardiogram 
(ECG). The labels in each dataset and our private dataset may have a 
definition gap or inaccurate annotations
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Fig. 7  Long-term incidence of developing a new-onset disease or death 
in patients without atrial fibrillation (AF) initially stratified by deep 
learning model (DLM) classification. Long-term outcomes of patients 
without a corresponding disease history and present AF at the time 
of initial classification, stratified by the initial network classification. 
False positive indicates an electrocardiogram (ECG) annotated as 

non-AF but identified as AF by DLM. True negative indicates an elec-
trocardiogram (ECG) annotated and DLM-identified as non-AF. The 
ordinate shows the cumulative incidence of developing each outcome, 
and the abscissa indicates years from the time of the ECG examina-
tion. The table shows the at-risk population and cumulative risk for the 
given time intervals in each AI stratification

 

Model dataset Performance:
AUC/Sens/Spec

Reference

AF The present Model CODE-test 0.9996/100%/98.8%
Ribeiro, et al. (2020) CODE-test -/96.9%/100.0%  [10]
The present Model PTB-XL 0.9892/95.4%/98.7%
The present Model CPSC2018 0.9824/93.4%/97.7%
Zhou et al. (2021) CPSC2018 0.9849/-/-  [28]

1AVB The present Model CODE-test 0.9570/89.3%/93.1%
Ribeiro, et al. (2020) CODE-test -/92.9%/99.5%  [10]
The present Model PTB-XL 0.9275/89.5%/81.4%
Strodthoff, et al. (2020) PTB-XL 0.968/-/-  [27]
The present Model CPSC2018 0.9813/95.7%/92.3%
Zhou et al. (2021) CPSC2018 0.9973/-/- [28]

CLBBB The present Model CODE-test 0.9909/90.0%/96.7%
Ribeiro, et al. (2020) CODE-test -/100.0%/100.0% [10]
The present Model PTB-XL 0.9883/97.0%/97.5%
Strodthoff, et al. (2020) PTB-XL 0.999/-/-  [27]
The present Model CPSC2018 0.9615/82.6%/84.4%
Zhou et al. (2021) CPSC2018 0.9598/-/-  [28]

CRBBB The present Model CODE-test 0.9839/88.2%/95.0%
Ribeiro, et al. (2020) CODE-test -/100.0%/99.5%  [10]
The present Model PTB-XL 0.9959/98.3%/98.7%
Strodthoff, et al. (2020) PTB-XL 0.998/-/-  [27]
The present Model CPSC2018 0.9325/68.6%99.0%
Zhou et al. (2021) CPSC2018 0.9999/-/-  [28]

PAC The present Model PTB-XL 0.9461/90.7%/88.6%
The present Model CPSC2018 0.8705/77.5%/86.0%
Zhou et al. (2021) CPSC2018 0.9860/-/-  [28]

PVC The present Model PTB-XL 0.9832/94.4%/97.4%
The present Model CPSC2018 0.8865/78.4%/94.0%
Zhou et al. (2021) CPSC2018 0.9647/-/-  [28]

Table 2  Performance of models 
in identifying arrhythmias across 
open datasets

AF, atrial fibrillation; 1AVB, 
first-degree atrioventricular 
block; CLBBB, complete right 
bundle branch block; CRBBB, 
complete left bundle branch 
block; PAC, premature atrial 
complexes; PVC, premature 
ventricular complexes
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individuals with false-positive AF detection by the DLM 
had a 1.69-fold increased risk of developing future new-
onset AF, a 1.73-fold increased risk of new-onset HF, and a 
1.40-fold increased risk of mortality over a 6-year follow-up 
period compared with true-negative individuals after adjust-
ing for sex and age. These findings raised the concept of AI 
disease “previvors,” referring to individuals with no ECG 
evidence of arrhythmia at present but with a predisposition 
to future risk of arrhythmic disease [25]. Our group recently 
found similar findings in the ECG-left ventricular diameter 
(ECG-LV-D) model [41]. Among individuals with echocar-
diography-evidenced normal left ventricular ejection frac-
tion (LVEF), the AI-enabled ECG-LV-D model may detect 
subtle electrical signal changes, enabling early identifica-
tion of individuals at risk of developing LV dysfunction in 
the future. The present AI-ECG models may serve as a valu-
able decision-support tool, enhancing current computerized 
ECG interpretations by offering more in-depth information 
for clinical decision-making. If frontline clinicians or cardi-
ologists were to miss a life-threatening arrhythmia, the AI-
ECG could alert them and facilitate prompt management.

Strength and Limitations

Our study demonstrated several key strengths, including a 
more integrated and rigorous ECG annotation protocol than 
previous studies published by other research groups and a 
focus on a broader range of clinically significant arrhyth-
mias, thereby expanding the usefulness of AI-ECG in 
clinical practice. We also conducted a human–machine com-
petition, which clearly demonstrated the trustworthiness of 
our model, performed lead-by-lead comparative analyses, 
and externally validated our model using three open-access 
databases to confirm its generalizability. However, the study 
also had some limitations. First, this was a retrospective 
study in which the development sets were obtained from 
single-center datasets; therefore, further external valida-
tion in diverse ethnic groups and among patients with vari-
ous comorbidities is warranted. Second, the study did not 
include certain rare but clinically significant arrhythmias, 
such as inherited Brugada syndrome and long-QT syn-
drome. Nevertheless, because the current AI-ECG models 
for different arrhythmias were each trained independently, 
new models could be seamlessly integrated in the future. 
Third, our DLM had higher sensitivity in most arrhythmia 
classes with a low positive predictive value. This indicates 
that clinical physicians should be alert to the possibility of 
arrhythmia instead of relying directly on AI-enabled diagno-
ses. Fourth, the potential benefit of preventive interventions 
for “AI disease previvors” remains unclear, necessitat-
ing further large-scale studies for validation. Finally, deep 
learning models still function as “black boxes,” providing 

Automation bias could be more pronounced in young and 
non-cardiology physicians, as they may have less confi-
dence in interpreting ECGs on their own [34].

Since the probabilities output by our DLM are highly 
correlated with the consensus of the annotation committee 
for various arrhythmias, these probabilities can serve as a 
reference for clinical decision-making. Young and non-car-
diology physicians could fully trust the AI model’s sugges-
tion if they observe probabilities > 0.9 or < 0.1. If borderline 
probabilities are present, it might warrant consultation with 
experienced experts or cardiologists. Therefore, applying 
our DLM-based ECG analysis in clinical practice, rather 
than traditional computerized ECG analysis, may aid in 
mitigating the impact of automation bias.

Nowadays, an increasing number of commercially avail-
able single-lead ECG devices are being used worldwide in 
both preclinical and clinical settings to detect and monitor 
cardiac arrhythmias [35]. The portable handheld single-lead 
ECG instruments are easy and effective single-time point 
screening tools for detecting arrhythmia. Users typically 
need to place their thumbs on two electrodes for 30  s to 
obtain readings. Similarly, smartwatch-based single-lead 
ECG devices, such as the Apple Watch, require consumers 
to place a finger on the Digital Crown for 30 s. Both types of 
devices have demonstrated comparable diagnostic accuracy 
to 12-lead ECGs or ambulatory 24-hour Holter monitoring 
in detecting atrial fibrillation [36–38]. These single-lead 
ECG devices have an electrical vector between one finger 
and the other that can simulate the classical Einthoven ECG 
lead I compared to standard ECGs [39]. In our lead compar-
ison analysis, we observed that lead I performed better than 
other single leads in detecting a broad range of arrhythmias, 
including AF. Consequently, we reinforced that lead I could 
be a favorable choice for application in wearable single-lead 
ECG devices.

Apart from its application in arrhythmia detection by 
DLM, extracting information from an ECG beyond human 
recognition capabilities is also an important aspect in the era 
of AI. Khurshid et al. demonstrated that AI-enabled analysis 
of 12-lead ECGs could effectively predict the future risk of 
AF development [40]. Although most of our models achieved 
high AUCs in detecting arrhythmias, the low prevalence of 
certain rare arrhythmias resulted in a relatively low posi-
tive predictive value for our AI-ECG model and an elevated 
false-positive rate. In contrast, the false-negative rate tended 
to be very low, reflecting the high negative predictive value 
of the models. Notably, the AI-ECG’s false-positive detec-
tion of atrial fibrillation may stem from frequent premature 
atrial complexes, potentially indicating the future develop-
ment of atrial fibrillation. Clinicians should consider addi-
tional rhythm monitoring for patients with false-positive 
atrial fibrillation detection by AI-ECG models. In our study, 
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limited insight into the rationale behind specific arrhythmia 
diagnoses, which may hinder their widespread acceptance.

Conclusions

We developed a DLM algorithm capable of accurately 
detecting 23 common cardiac arrhythmias. Our DLM dem-
onstrated superior diagnostic performance compared to 
the Philips ECG automatic analysis system and achieved 
the top position for balanced accuracy in human-machine 
competition. The high sensitivity of our DLM in detecting 
these cardiac arrhythmias suggests its potential in identify-
ing high-risk patients, making it a promising screening tool. 
With interdisciplinary collaboration between clinicians and 
AI engineers, future research and clinical trials are war-
ranted to evaluate the impact of AI-ECG models on clinical 
workflow and cardiovascular outcomes.
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